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Asthma is a complex disease well-suited to metabolomic profiling, both for the development of

novel biomarkers and for the improved understanding of pathophysiology. In this review, we

summarize the 21 existing metabolomic studies of asthma in humans, all of which reported

significant findings and concluded that individual metabolites and metabolomic profiles

measured in exhaled breath condensate, urine, plasma, and serum could identify people with

asthma and asthma phenotypes with high discriminatory ability. There was considerable con-

sistency across the studies in terms of the reported biomarkers, regardless of biospecimen,

profiling technology, and population age. In particular, acetate, adenosine, alanine, hippurate,

succinate, threonine, and trans-aconitate, and pathways relating to hypoxia response, oxida-

tive stress, immunity, inflammation, lipid metabolism and the tricarboxylic acid cycle were all

identified as significant in at least two studies. There were also a number of nonreplicated

results; however, the literature is not yet sufficiently developed to determine whether these

represent spurious findings or reflect the substantial heterogeneity and limited statistical power

in the studies and their methods to date. This review highlights the need for additional asthma

metabolomic studies to explore these issues, and, further, the need for standardizedmethods in

the way these studies are conducted. We conclude by discussing the potential of translation of

these metabolomic findings into clinically useful biomarkers and the crucial role that integrated

omics is likely to play in this endeavor. CHEST 2017; 151(2):262-277
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Asthma is a complex disease with both
environmental and genetic influences;
however, the role of molecular determinants
as mediators of asthma is not yet fully
understood.1 Metabolomics, the systematic
analysis of small molecules, including
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carbohydrates, amino acids, organic acids,
nucleotides, and lipids, has identified new
biomarkers and novel pathogenic pathways
for a number of complex chronic diseases.2

Metabolomics is well-suited to the study of
diseases with an environmental etiological
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component because it has the potential to capture the
history of the cellular response to past exposures.
Metabolite fluctuations represent an integrated
pathophysiologic profile encompassing genetic and
environmental interactions; therefore, metabolic profiles
can be instrumental in elucidating the understanding of
journal.publications.chestnet.org
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the biologic mechanisms of asthma. Although the
application of metabolomics to study asthma is recent,
the body of literature is rapidly growing. Critical analysis
of this literature will afford an improved understanding
of the status of asthma metabolomics and help to inform
future studies.
Methods
The National Center for Biotechnology Information PubMed database
was searched to identify studies of asthma in humans using mass
spectrometry (MS) or nuclear magnetic resonance spectroscopy
(NMR) to identify and quantify metabolites associated with asthma or
asthma-related outcomes. The references of each identified study were
evaluated to identify additional qualifying manuscripts. Twenty-one
studies using metabolomic profiling of exhaled breathe condensate
(EBC) (n ¼ 11),3-13 urine (n ¼ 4),14-17 serum (n ¼ 3),18-20 and
plasma (n ¼ 3)21-23 were identified (Table 1). Twelve studies evaluated
children,3-10,14,15,21,22 eight evaluated adults,12,13,16-20,23 and one
included both.11 The majority used MS-based methods; six used
NMR.10-13,15,20 All but four16,17,21,22 were case-control in design, and
the total number of people with asthma ranged from 1016 to 343.9

The primary aim of most studies was to examine the differences
between asthma cases and healthy control patients, with a smaller
number of studies examining disease severity or phenotypes. One
study of recurrent wheeze was also included.7
Results
All 21 studies reported significant findings and
concluded that metabolomic profiles in EBC, urine, and
blood could distinguish asthma and asthma phenotypes
(Table 2). The utility of such profiles is twofold: (1) the
identification of metabolite biomarkers for asthma and
(2) the improved understanding of the pathophysiology
of asthma. The majority of the studies focused on the
former by building metabolomic signatures that were
subsequently assessed for discriminative ability. These
signatures were created by identifying associated
metabolites from the total number measured, which
ranged by study from two4 to almost 9,000.14 However,
the interrogation of the metabolites and pathways
composing these signatures also provided important
insights into asthma pathophysiology. In this review, we
compare the metabolomic signatures and the biological
information they impart. In particular, we focus on how
different methods and techniques may affect
metabolomic signatures, and the implications thereof, as
the metabolomics field begins to shift toward clinical
translation.
Metabolomic Biomarkers of Asthma

Predictive Indices: The indices of prediction reported
by the included studies suggest extremely good
classification accuracy ($ 85%), particularly when
differentiating asthma cases from healthy control
patients. Discriminatory power was lower for mild
vs severe asthma, but would still be ranked as good to
excellent ($ 80%) in most cases. There was no evidence
that discriminatory ability differed in adults as opposed
to children, with comparable values reported in both
groups. The most commonly used model was partial
least squares-discriminant analysis (PLS-DA), which is
appropriate for analysis of datasets with many
correlated predictors, as is common in metabolomics.
The R2 and Q2, which are used to assess PLS-DA
models, had high values in all studies; however, PLS-DA
is known to overestimate predictive ability and only a
few studies addressed this.24,25 Four studies reported
area under the receiver operator characteristic (AUC)
curves, demonstrating strong predictive ability, with the
highest AUC of 0.977 for a 10-biomarker profile.20 The
highest AUC for a single metabolite was 0.976 for
succinate in serum.19 On the basis of these studies, there
was no evidence that including larger numbers of
metabolites in the profile increased discriminatory
ability.

Regardless of the reported predictive indices, the true
test of discriminatory ability is validation. In the search
for biomarkers several possible validation strategies can
be used, including: (1) testing on a separately recruited
and ascertained validation cohort; (2) using a hold-out
data set; and (3) performing permutation testing by label
shuffling.24,25 Eight5,7,8,14,15,17,19,21 and four9,12,13,20

studies used permutation and a hold-out dataset,
respectively. Both approaches provided support for
accuracy of the reported biomarkers. However, the most
robust measure of validation is replication in an entirely
independent cohort; this was not performed by any
included study. In this review, we highlight the
metabolites and metabolomic pathways that are
replicated between the included studies to inform the
development of comprehensive and effective
metabolomic asthma biomarkers.
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TABLE 1 ] Characteristics of the 21 Asthma Metabolomic Studies Conducted in Humans

Biological
Sample

Age
Group Method Authors No. of Cases

No. of Control
Patients Diagnostic Criteria Main Aim Population

Metabolomic
Profiling

EBC Children LC-MS Esther et al
(2009)3

11 28 PD Metabolomic
profile of asthma
vs healthy

United States Targeted:
adenosine,
AMP, and
purine
biomarkers

Montuschi
(2009)4

20 atopic patients
without asthma,
25 steroid-naïve
atopic mild
patients with
asthma, 22 atopic
mild-to-moderate
patients with
asthma

15 PD; skin-prick
testing

Leukotriene profile
of asthma
vs healthy

Italy Targeted:
leukotrienes

Carraro et al
(2012)5

31 patients with
nonsevere
asthma,
11 patients with
severe asthma

15 PD; GINA
guidelines

Discrimination of
different asthma
phenotypes

Italy Untargeted

GC-MS Caldeira et al
(2012)6

32 atopic patients
with asthma

27 PD Metabolomic
profile of asthma
vs healthy

Portugal Targeted:
alkanes,
alkenes,
aldehydes,
and ketones

van de Kant
et al (2013)7

202 recurrent
wheezers

50 $ 2 parental-
reported
episodes of
wheeze during
life

Metabolomic
profile of
recurrent
wheeze vs no
recurrent
wheeze

ADEM study,
Netherlands

Targeted:
VOCs

Gahleitner et al
(2013)8

11 12 Health
questionnaire;
respiratory
examination

Metabolomic
profile of asthma
vs healthy

United
Kingdom

Targeted:
VOCs

EBC Children GC-MS Smolinska et al
(2014)9

343 185
healthy
and
546
transient
wheezers

PD Metabolomic
profile of asthma
vs transient
wheeze

ADEM study,
Netherlands

Targeted:
VOCs
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TABLE 1 ] (Continued)

Biological
Sample

Age
Group Method Authors No. of Cases

No. of Control
Patients Diagnostic Criteria Main Aim Population

Metabolomic
Profiling

NMR Carraro et al
(2007)10

17 patients with
persistent asthma
treated with
inhaled
corticosteroids,
8 corticosteroid-
naïve intermittent
patients with
asthma

11 PD; GINA
guidelines

Metabolomic
profile of asthma
vs healthy

Italy Untargeted

All ages NMR Sinha et al
(2012)11

7 adults with
asthma,
58 children with
asthma

10 PD Metabolomic
profile of asthma
vs healthy

India Untargeted

Adults NMR Ibrahim et al
(2013)12

82 35 Reported
symptoms;
treatment

Metabolomic
profile of asthma
vs healthy

ASMAL study,
United
Kingdom

Untargeted

Motta et al
(2014)13

35 patients with mild
asthma

35 PD; GINA
guidelines; DSS

Metabolomic
profile of asthma
vs healthy

Italy Targeted and
untargeted

Urine Children LC-MS Mattarucchi
et al (2012)14

41 12 PD; GINA
guidelines

Metabolomic
profile of asthma
vs healthy

Italy Untargeted

NMR Saude et al
(2011)15

73 patients with
stable asthma,
20 patients with
unstable asthma

42 PD Metabolomic
profile of asthma
vs healthy, and
of different
asthma
endotypes

Canada Targeted

Adults GC-MS Loureiro et al
(2014)16

7 patients with
allergic asthma,
3 patients with
nonallergic
asthma

NA PD Metabolomic
changes with
asthma
exacerbation

Portugal Targeted:
aldehydes
and alkanes
and central
metabolites

Loureiro et al
(2016)17

57 NA PD Metabolomic
profile of asthma
severity

Portugal Targeted:
aliphatic
aldehydes
and alkanes
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TABLE 1 ] (Continued)

Biological
Sample

Age
Group Method Authors No. of Cases

No. of Control
Patients Diagnostic Criteria Main Aim Population

Metabolomic
Profiling

Serum Adults GC-MS Ried et al
(2013)18

147 2,778 Self-report and
medical
examination

Metabolomic
profile of asthma
vs healthy

KORA Study,
Germany

Targeted

Chang et al
(2015)19

17 patients with mild
persistent asthma

17 PD; GINA
guidelines

Metabolomic
profile of asthma
vs healthy

China Untargeted

Plasma Children LC-MS McGeachie et al
(2015)21

20 NA PD Identification of
predictors of
asthma control

CARE
Network
cohort,
United
States

Targeted
lipidomics

Fitzpatrick et al
(2014)22

22 patients with
mild/moderate
asthma,
35 patients with
severe asthma

NA Spirometry Metabolomic
profile of
mild-moderate
vs severe
asthma

United States Untargeted

Plasma Adults NMR Jung et al
(2013)20

39 26 PD Metabolomic
profile of asthma
vs healthy

South Korea Untargeted
and
targeted

MS Comhair et al
(2015)23

20 10 ATS Workshop on
Refractory
Asthma
Guidelines

Metabolomic
profile of asthma
vs healthy, and
of different
asthma
endotypes

United States Untargeted
and
targeted

ADEM ¼ Asthma Detection and Monitoring Study; AMP ¼ adenosine monophosphate; ASMAL ¼ Assessment of Manchester Asthmatics Longitudinally Study; ATS ¼ American Thoracic Society; CARE ¼ Childhood
Asthma Research and Education Study; DSS ¼ disease severity score; EBC ¼ exhaled breath condensate; GC-MS ¼ gas chromatography–mass spectrometry; GINA ¼ Global Initiative for Asthma; KORA ¼ Cooperative
Health Research in the Region Augsburg Study; LC-MS ¼ liquid chromatography–mass spectrometry; NA ¼ not applicable; NMR ¼ nuclear magnetic resonance spectroscopy; PD ¼ physician diagnosed; VOC ¼ volatile
organic compounds.
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TABLE 2 ] Summary of Results for the 21 Asthma Metabolomic Studies in Humans

Authors
No. of

Metabolites Results Significant Metabolites Implicated Pathways Conclusions Validation

Esther et al
(2009)3

6 Adenosine-to-urea ratio
elevated in asthma
(median, 1.5) vs control
(median, 0.4) (P < .05)

Adenosine Neutrophilic airway
inflammation

EBC adenosine-to-urea
ratio is a potential
noninvasive
biomarker of airways
disease

No

Montuschi et al
(2009)4

2 Exhaled leukotrienes were
increased in children with
asthma children and were
highest in steroid-naive
children

Leukotrienes Leukotriene-related
pathways, inflammatory
pathways

EBC leukotriene B4 and
eicosanoids represent
potential noninvasive
biomarkers of airway
inflammation and
therapy monitoring

No

Carraro et al
(2012)5

NR PLS-DA models could
distinguish severe asthma
cases from healthy control
patients (R2 ¼ 0.93;
Q2¼0.75); and severe from
nonsevere asthma cases
(R2 ¼ 0.84; Q2 ¼ 0.47).

Retinoic acid, adenosine,
and vitamin D

NR Metabolomic profiling of
EBC could clearly
distinguish asthmatic
children

Internal cross-
validation

Caldeira et al
(2012)6

134 PLS-DA model had a
classification rate of
98% and showed
96% sensitivity and
95% specificity for
distinguishing patients
with asthma from healthy
control patients

Nonane, 2,2,4,6,
6-pentamethylheptane,
decane, 3,
6-dimethyldecane,
dodecane, and
tetradecane

Oxidative stress and
inflammatory processes

EBC metabolome is able
to accurately
distinguish healthy
children from children
with asthma

No

van de Kant
et al (2013)7

913 Sparse logistic regression
model on the basis of
28 VOCs correctly
classified 73% of recurrent
wheezers (79% sensitivity,
50% specificity)

28 VOCs NR VOC profiles in EBC are
able to distinguish
children with and
without recurrent
wheeze

Internal cross-
validation

Gahleitner et al
(2013)8

NR PLS-DA model on the basis of
8 metabolites
distinguished patients with
asthma from healthy
children with
100% accuracy

1-(methylsulfanyl)propane,
ethylbenzene,
1,4-dichlorobenzene,
4-isopropenyl-1-
methylcyclohexene,
2-octenal, octadecyne,
1-isopropyl-3-
methylbenzene, and 1,
7-dimethylnaphtalene

NR VOC profiles in EBC are
able to distinguish
children with and
without asthma

Internal cross-
validation
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TABLE 2 ] (Continued)

Authors
No. of

Metabolites Results Significant Metabolites Implicated Pathways Conclusions Validation

Smolinska et al
(2014)9

NR PLS-DA model on the basis of
17 VOCs distinguished
children with asthma from
transient wheezers with a
prediction rate of 80%

Alkanes, acetone, 2,
4-dimethylpentane, 2,
4-dimethylheptane, 2,2,
4-trimethylheptane,
1-methyl-4-(1-
methylethenyl)
Cyclohexen, 2,3,
6-trimethyloctane,
2-undecenal, Biphenyl,
2-ethenylnaphtalene, 2,6,
10-trimethyldodecane,
Octane, 2-methylpentane,
2,4-dimethylheptane, and
2-methylhexane

Oxidative stress and lipid
peroxidation

VOCs in EBC predict
development of
asthma

Split into a
training and
test set
(80:20)

Carraro et al
(2007)10

101
spectral
regions

NMR-based PLS-DA model
distinguished patients with
asthma from healthy
children with a
classification rate of 95%

Oxidized and acetylated
compounds.

Oxidative stress Metabolomic profiling of
EBC affords potential
for noninvasive
biomarker
development

No

Sinha et al
(2012)11

NR Trident peak at 7 ppm
reliably distinguishes EBC
samples from patients with
and without asthma

Ammonium ions Glutamate-glutamine cycle Distinct metabolomic
profiles of asthmatics
and healthy control
patients can be
identified in NMR-
based metabolomic
profiling of EBC

No

Ibrahim et al
(2013)12

367
spectral
bins

13 spectral regions
discriminated patients with
asthma from healthy
control patients; AUC,
0.91; overall accuracy,
82.3%; PPV, 83.1%; NPV
78.6%

Reported spectral regions NR Distinct metabolomic
profiles of patients
with asthma and
healthy control
patients can be
identified in NMR-
based metabolomic
profiling of EBC

Split into a
training and
test set
(70:30)

Motta et al
(2014)13

NR PLS-DA model distinguished
patients with mild asthma
from healthy subjects
(R2 ¼ 0.90, Q2 ¼ 0.84)

Saturated fatty acids, valine,
adenosine, hippurate,
alanine, formate, urocanic
acid, proline, acetate,
ethanol, methanol,
isoleucine, propionate,

Histidine conversion
pathways

EBC metabolome is
determined by
asthma status

External
validation
models
(n ¼ 40
drawn from
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TABLE 2 ] (Continued)

Authors
No. of

Metabolites Results Significant Metabolites Implicated Pathways Conclusions Validation

4OH-phenylacetate,
tyrosine, arginine, trans-
aconitate, and
phenylalanine

same
population)

Mattarucchi
et al
(2012)14

6,744
features

PLS-DA models distinguished
patients with well-
controlled symptoms
(resulting from drugs),
well-controlled symptoms
(not from drugs), and
poorly controlled
symptoms (despite using
drugs). Prediction rate
> 90% for all models

Urocanic acid and methyl-
imidazoleacetic acid

Modulation of immunity LC-MS urinary
metabolic profiles can
characterize asthma
in children

Internal cross-
validation

Saude et al
(2011)15

70 PLS-DA model on the basis of
23 metabolites could
distinguish patients with
asthma from healthy
children; sensitivity, 94%;
specificity, 95%;
R2¼ 0.84; Q2 ¼ 0.74

2-oxaloglutarate, succinate,
fuma- rate, 3-hydroxy-
3-methylglutarate,
threonine, and
cis-aconitate and
trans-aconitate

Hypoxia, TCA cycle NMR urinary
metabolomic profiles
can characterize
asthma in children

Internal cross-
validation

Loureiro et al
(2014)16

32 During exacerbations, urine
revealed increased levels
of aldehydes and alkanes
and alterations in a number
of nonvolatile metabolites

Threonine, lactate, alanine,
carnitine, acetylcarnitine,
trimethylamine-N-oxide,
acetate, citrate,
malonate, hippurate,
dimethylglycine, and
phenylacetylglutamine

Oxidative stress,
tricarboxylic acid cycle

Urinary metabolic
composition in
asthmatics is highly
altered during
exacerbations

No

Loureiro et al
(2016)17

34 Metabolites related to lipid
peroxidation levels could
predict clinical and
laboratory parameters
including disease severity,
lung function, FeNO, and
blood eosinophils in
nonobese patients
(R2 0.53-0.90)

Aliphatic aldehydes and
alkanes

Lipid peroxidation Metabolomics can
provide vital insights
into asthma
mechanisms

Internal cross-
validation
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TABLE 2 ] (Continued)

Authors
No. of

Metabolites Results Significant Metabolites Implicated Pathways Conclusions Validation

Ried et al
(2013)18

151 Identified 4 metabolites
associated with asthma
risk loci and asthma status

Phosphatidylcholines, lyso-
phosphatidylcholines,
PC.aa.C42:2 and
PC.aa.C42:4

Lipid metabolism GC-MS serum-based
metabolomics affords
potential for asthma
biomarker
development

No

Chang et al
(2015)19

272 14 discriminatory
metabolites were
identified. Top metabolite
AUCs: 2-ketovaleric acid
(0.874), 3,
4-dihydroxybenzoic acid
(0.965), 5-aminovaleric
acid (0.948), ascorbate
(0.917), dehydroascorbic
acid (0.896), inosine
(0.962), phenylalanine
(0.927), and succinic acid
(0.976)

2-ketova-leric acid, 3,
4-dihydroxybenzoic acid,
5-aminovaleric acid,
ascorbate,
dehydroascorbic acid,
inosine, phenylalanine,
and succinic acid
(succinate),
b-glycerophosphoric acid,
maleamate, maleic acid,
monoolein, ribose, and
trans-4-hydroxy-L-proline

TCA cycle, nitrogen
metabolism, glutamine
and glutamate
metabolism, ribose
metabolism, and
phenylalanine
metabolism, alterations in
amino acid metabolism,
and hypoxia

Distinct metabolomic
profiles of asthmatics
and healthy control
patients can be
identified in GC-MS
based metabolomic
profiling of serum

Internal cross-
validation

McGeachie
et al
(2015)21

25 Integrated genomic-
metabolomic model could
predict asthma control
(AUC, 95%)

monoHETE0863, and
sphingosine-1-phosphate,
arachidonic acid, PGE2 and
S1P

Cellular immune response,
interferon signaling, and
cytokine-related signaling

Metabolomic profiling of
plasma provides
insight into the
pathophysiology of
asthma control

Bootstrapping
and cross-
validation

Fitzpatrick et al
(2014)22

8,953
features

Identified 164 Discriminatory
metabolites

Glycine, serine, and
threonine

Oxidative stress: the
glycine, serine, and
threonine metabolism
pathway and the
N-acylethanolamine, and
N-acyltransferase
pathway

Severe, corticosteroid
refractory asthma in
children is associated
with metabolic
derangements

No

Jung et al
(2013)20

64 PLS-DA model distinguished
patients with asthma from
healthy adults; training set
AUC, 1 (P < .001);
validation set: 0.9771
(P < .001). Prediction in
validation set: 90.9% for
asthma and 100% for
control subjects

Formate, methanol, acetate,
choline,
O-phosphocholine,
arginine, and glucose

Asthma status:
hypermethylation,
response to hypoxia, and
immune reaction;
severity: lipid metabolism

(1)H-NMR–based
metabolite profiling of
serum may be useful
for the effective
diagnosis of asthma
and a further
understanding of its
pathogenesis

External
validation
models
(n ¼ 10
drawn from
same
population)
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Outcomes: A large number of common metabolites
were associated with asthma case status, severity,
exacerbations, and phenotype discrimination, suggesting
metabolites contributing to disease onset may also
contribute to its severity (Table 3). Even where
individual metabolites were not concordant across
similar studies, there was consistency in the enriched
metabolic pathways (Table 4). Similarly, many were
common to both the studies of adults and children. This
finding of common metabolomic signatures in children
and adults with asthma may support a shared etiology
and pathophysiology for these two entities, in contrast to
the prevailing belief that childhood asthma is influenced
more by genetic predisposition, whereas adult asthma is
more affected by environmental factors and obesity.26 In
fact, it may be age at asthma onset that is most
important in this regard. This was not reported in the
studies and, given that 95% of asthma is postulated to
start in childhood,27 it can be assumed the included
studies are not representative of adult-onset asthma.
Further metabolomic studies with rigorously
characterized adult-onset asthma are required to
determine if and how the metabolomic profiles of such
cases differ.

Biological Samples: Unlike the genetic sequence,
metabolite profiles can vary depending upon the
biomaterial being assessed. Throughout the variety of
biospecimens used in these studies, there was
considerable consistency in the metabolites and
metabolomic pathways identified as significant (Tables 3
and 4); however, larger numbers were not replicated
between biospecimens. The lack of replication between
studies using the same biospecimen should also be
noted. This may be in part attributable to specimen
collection conditions and processing procedures, which
can affect the metabolome; however, there was no
evidence of systematic bias relating to such variables for
plasma or urine in these studies.

A number of variables should be considered for EBC,
including whole breath vs end-tidal gases, collection
device used as well as whether inhaled medications,
spirometry, exercise, or other procedures have occurred
before sample collection. Motta et al13 investigated the
impact of different condensation temperatures on the
EBC metabolome (�27.3 and �4.8�C). They reported
that although the samples collected at both temperatures
resulted in metabolomics profiles that could distinguish
asthma cases from control patients, the constituent
metabolites of the profiles varied. Their work and that of
others highlights that susceptibility to such external
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TABLE 3 ] Metabolites Identified as Significant in More Than 1 Study

Group Metabolite Biospecimen Population Method Outcome

Acid salt Formate Plasma,20 EBC13 Adults13,20 NMR13,20 AvH13,20

Hippurate Urine,16 EBC13 Adults13,16 GC-MS16;
NMR13

AvH,13

exacerbation16

Succinate Serum,19 urine15 Children,15

adults19
GC-MS19;

NMR15
AvH,15,19

phenotype15

Alcohol Methanol Plasma,20 EBC13 Adults13,20 NMR13,20 AvH13,20

Amino acid Alanine Urine,16 EBC13 Adults13,16 GC-MS,16

NMR13
AvH,13

exacerbation16

Arginine Plasma,20 EBC13 Adults13,20 NMR13,20 AvH13,20

Phenylalanine Serum,19 EBC13 Adults13,19 GC-MS,19

NMR13
AvH13,19

Threonine Plasma,22

urine15,16
Children,15,22

adults16
LC-MS,22

GC-MS,16

NMR15

AvH,15

phenotype,15,22

exacerbation16

Intermediate in the
catabolism of
histidine

Urocanic acid Urine,14 EBC13 Children,14

adults13
LC-MS,14

NMR13
AvH13,14

Organic acid Trans-aconitate Urine,15 EBC13 Children,15

adults13
NMR13,15 AvH,13,15,

phenotype15

Purine nucleoside Adenosine EBC,3,5,13

plasma23
Children3,5;

Adults13,23
MS3,5,23;

NMR13
AvH3,13;

Phenotype5,23

Salt Acetate Plasma,20 urine,16

EBC9,13
Children,9,20

adults13,16
LC-MS,20

GC-MS,9,16

NMR13

AvH,13,20 AvW,9

exacerbations16

VOC 1,4-dichloro-
benzene

EBC7,8 Children7,8 GC-MS7,8 AvH,8 WvH7

2,4-dimethyl-
1-heptene

EBC7,9 Children7,9 GC-MS7,9 WvH,7 AvW9

AvH ¼ asthma cases vs healthy control patients; AvW ¼ asthma cases vs wheeze cases; phenotype ¼ measures of asthma phenotypes and severity;
WvH ¼ heeze cases vs healthy control patients. See Table 1 legend for expansion of other abbreviations.
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influences tends to be metabolite dependent. Further, it
underlines the importance of standardizing collection
and metabolite assays for biospecimens—a goal that has
yet to be achieved in this field. Last, none of the studies
profiled metabolites in more than one biospecimen type;
therefore, it is not possible to determine the relationship
between metabolites across biospecimens from the same
individual, nor whether discriminatory metabolites
could be detected in different biospecimens from the
same subject.

Metabolomic Profiling: Metabolomic profiling
technique may also account for differences in study
findings. NMR uses the magnetic properties of atomic
nuclei to generate information on structure and thereby
identify metabolites in the biofluid under investigation
by their unique pattern of chemical shifts and peak
intensities.28 Liquid or gas chromatography tandem
mass spectrometry combines chromatography, a
technique that separates metabolites, with MS, which
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measures their abundance. The complement of
metabolites measured by NMR and MS may not always
be comparable. Nevertheless, multiple metabolites and
metabolomic pathways were defined as significant under
both methods (Tables 3 and 4). Others were only
identified as significant in the studies using NMR
profiling such as arginine, formate, methanol,13,20 and
trans-aconitate.13,15 However whether this is a function
of the profiling method or other sources of heterogeneity
between the studies cannot be discerned.

One fundamental source of heterogeneity is the use of a
global untargeted metabolomic profiling approach,
which aims to capture all metabolites in a biological
system as opposed to a hypothesis-driven approach
targeting specific metabolites, or metabolite classes.
Fifteen of the included studies were targeted or
semitargeted in nature: three focused on volatile organic
compounds (VOCs)7,9,13; three on a combination of
alkanes, alkenes, aldehydes, and ketones6,16,17; one on
[ 1 5 1 # 2 CHES T F E B R U A R Y 2 0 1 7 ]
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TABLE 4 ] Metabolomic Pathways Identified as Significant in More Than 1 Study

Pathway Biospecimen Population Method Outcome

Amino acid metabolism Serum,19 plasma23 Adults19,23 GC-MS,19 MS23 AvH,19,23

phenotype23

Glutamate-glutamine cycle;
glutamine and glutamate
metabolism

EBC,11 serum19 Children,11

adults11,19
NMR,11 GC-MS19 AvH11,19

Hypoxia response pathways Serum,19 plasma,20

urine15
Children,15

adults19,20
GC-MS,19 NMR15,20 AvH,15,19,20

phenotype15

Immune pathways Plasma,20,21,23 urine14 Children,14,21

adults20,23
MS,23 LC-MS,14,2

NMR20
AvH,14,20,23

phenotype,23

asthma control21

Inflammatory pathways EBC,4,6 plasma23 Children,4,6 adult23 GC-MS,6 LC-MS,4

MS23
AvH,4,6,23

phenotype23

Lipid metabolism Plasma,20 serum,18

EBC,9 urine17
Children,9

adults17,18,20
NMR,20

GC-MS9,17,18
AvH,18,20 AvW,9

phenotype17

Oxidative stress EBC,6,9,10 plasma,22

urine16
Children,6,9,10,22

adults16
GC-MS,6,9,16

LC-MS,22 NMR10
AvH,6,9,10

exacerbations,16

phenotype22

Tricarboxylic acid cycle Urine,16 serum,19

urine15
Children,15

adults16,19
GC-MS,16,19 NMR15 AvH,15,19

phenotype15,16

See Table 1 and 3 legends for expansion of abbreviations.
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leukotrienes4; and the rest on a variety of metabolites
from specific panels. A targeted approach allows for
optimal sensitivity in the measurement of these
metabolites because it uses tailored and calibrated
methods; however, it lacks the broad range of an
untargeted approach and may miss novel but important
metabolites without an a priori biological hypothesis.
Crucially, it also hampers the replication and validation
of findings between studies.

Other Variables: Replication may also have been
affected by heterogeneity in the diagnostic criteria for
asthma, with variable use of physician diagnosis,
spirometric criteria, and/or subject self-report. Even
where a definitive diagnosis can be made, asthma reflects
a broad spectrum of disorders of varying severity. The
concordance between the studies across a range of
asthma outcomes suggests a similar underlying
pathogenesis, however.

The metabolome is known to fluctuate with factors such
as BMI and to be highly sensitive to external influences
including diet, smoking status, and treatment regime.
Three7,12,20 studies withheld treatment for a set period
before sample collection. Others reported on medication
usage, some used treatment as a measure of asthma
severity, and five3,8,9,11,19 did not report on treatment at
all. Currently, the data are too limited to draw conclusions
regarding the effect of treatment on the asthma
metabolome. Similarly, the data on potential confounders
journal.publications.chestnet.org
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are not yet comprehensive enough for analysis, but will
benefit from the efforts of the wider metabolomics
community to identify the metabolomic shifts induced by
various environmental factors and physiological
characteristics, and the “healthy” metabolome.

Biological Insights Into Asthma Pathophysiology
and Treatment

An expanding list of human metabolites has been
annotated and comprehensively mapped to specific
biological pathways. In the reviewed studies, a large
number of pathways were reported to be associated with
asthma outcomes in a variety of biospecimens (Table 2).
Although diverse, these pathways can be broadly
categorized on the basis of general physiological or
molecular roles: (1) immune response, signaling, and
inflammation; (2) metabolism of amino acids, sugars,
bile acids, steroids, and lipids; (3) oxidative stress and
hypoxia; (4) cellular energy homeostasis; and (5) DNA
hypermethylation. Among studies investigating asthma
status, all were represented. In analyses of asthma
phenotypes, immune responses, oxidative stress, energy
metabolism, and metabolism of amino acids and lipids
were enriched, whereas asthma control21 was associated
primarily with immune response pathways.

Aberrant immune responses and acute inflammation are
hallmark features of all asthmatic phenotypes, and the
predominance of inflammatory and immunological
273
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response pathways is not surprising. An enrichment of
pathways reflecting the increased metabolism of amino
acids, lipids, steroids, and bile acids that are fundamental
to asthma pathogenesis is also anticipated. Amino acids
are mediators of immunological activities in asthma and
have antioxidant functions; in particular, taurine, glycine,
glutamine, and glutamate may have potentially protective
effects, whereas phenylalanine may have adverse effects.
Lipid mediators are key drivers of inflammatory
responses in asthma and have well-characterized roles in
T-cell recruitment and energy metabolism; therefore, the
enrichment of lipid metabolism pathways in asthma
metabolomic studies is consistent with the biological
importance of these molecules in asthma pathogenesis.
The role of oxidative stress in asthma has also been well-
studied, and evidence suggests that an imbalance between
oxidation and reducing systems, in the favor of oxidative
states, contributes to asthma severity. Both endogenous
and exogenous reactive oxygen species including
superoxide and reactive nitrogen and hydrogen species,
increase airway inflammation, and are key determinants
of asthma severity. Activated inflammatory cells in the
airway produce reactive oxygen species that contribute to
poor asthma control by reducing the ability of the airway
epithelium to repair damage resulting from oxidative
stress.

Pathways related to hypoxia were also significantly
enriched. Increased hypoxic responses by the inflamed
airway have been observed in asthma and were reported
to lead to exacerbations in acute and chronic
experimental allergic models of asthma, but not in
healthy, noninflamed lung tissue.29 The increase in
oxidative and hypoxic stress responses in asthma
coincides with considerable alterations in cellular energy
metabolism. Levels of metabolites participating in the
tricarboxylic acid cycle were altered in asthma, and
fluctuations of metabolites in pathways involved in
cellular energy metabolism in the lungs have been
observed in mouse models of experimental asthma.30

Potentially, alterations in these pathways may reflect the
reduced ability of the damaged lung to meet the
substantial energy demands of activated inflammatory
cells in the allergic airway. Finally, epigenetic effects
have a strong impact on asthma severity, and
metabolites related to the methyl transfer pathway were
also reported.13,20 DNA methylation may increase
airway inflammation by predisposing immune responses
towards a Th2 phenotype; increased hypermethylation
may therefore represent a novel epigenetic mechanism
underlying asthma pathogenesis.20
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Discussion: The Future of Asthma Omics
Asthma metabolomics studies to date are limited but
encouraging and report a number of replicated
biologically plausible metabolites and metabolomic
pathways associated with the development and
manifestation of asthma. Whether the nonreplicated
results represent spurious findings or heterogeneity
between the studies cannot be assessed with the literature
available to date. Much of this heterogeneity stems from
lack of standardization in thefield, and highlights the need
for the development of a rigorous set of criteria for
conducting and reporting metabolomic studies.

If clinical translation is the end goal, several factors must
be considered. First, the determination of specificity: the
biomarkers must be specific to the asthma phenotype
rather than representing a general profile of a biological
system in a dysregulated physiological state. In these
studies, the VOC profile of wheeze7 was similar to many
of the asthma profiles. This is perhaps not unexpected;
however, Esther et al3 also reported similarities with
cystic fibrosis profiles. In the wider literature, more
distinct respiratory disorders such as ARDS as well as
exposure to environmental pollutants that may affect
lung function31 were also associated with a number of
the metabolites identified in this review. Perhaps most
importantly, many “asthma metabolites,” particularly
the amino acids and those involved in choline
metabolism, have been associated with other chronic
diseases including multiple malignancies.32 Although
this does not negate their possible involvement in the
pathogenesis of asthma, it does call into question their
utility as stand-alone biomarkers.

A further question involves the role of the biomarkers.
Most studies focused on distinguishing asthma cases
from healthy control patients; however, established
clinical markers and criteria for the diagnosis of asthma
already exist. A more useful role for metabolomic
biomarkers may be in the discrimination of different
subtypes, which are currently not well-defined.
Prediction is arguably of the greatest clinical use. No
studies used a prospective design to identify predictive
biomarkers, although one focused on wheezing in
preschoolers, which could be considered an early asthma
phenotype. In terms of the most optimal biospecimen,
EBC is an attractive, noninvasive method approach for
collecting samples with more direct relevance to the end
organ of interest. However, in the included studies, there
was no evidence that EBC-based biomarkers
outperformed blood or urine.
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Clearly, further refinement of biomarkers is required
before clinical translation is a viable option.
Metabolomic data alone may be insufficient to fully
characterize complex pathologies.33 The integration of
metabolomics with other omic data to identify the
interactions and synergisms between the different
hierarchical components of the “central biological
dogma” represents a potential strategy that will allow the
visualization of a biological system on a global level.

Ried et al18 integrated metabolomic profiles with
asthma-associated single nucleotide polymorphisms
(SNPs) and observed that several SNPs at the asthma
susceptibility locus 17q21 influenced asthma-associated
metabolites, particularly phosphatidylcholines, and
concluded that the simultaneous analysis of metabolite
and genetic data provide an improved understanding of
diseases mechanisms on a molecular and functional
level. McGeachie et al21 expanded on this approach by
additionally incorporating gene expression and
methylation data into their analysis. This led to both an
increased understanding of physiology and an increased
predictive accuracy, relative to the use of a single omic
technology, again supporting the integration of multiple
data types.

To date, no studies have integrated metabolomics and
proteomic data, although this may in fact be the most
informative integrative strategy. A single gene can
generate multiple different proteins through alternative
splicing, and posttranslational modifications and
proteolytic processes. These proteins form the main
structural components of all cells and control the
majority of their biological functions.34 One crucial role
is as enzymes to catalyze metabolic and signaling
pathways; however, it can be difficult to ascertain the
endogenous physiological function of these different
enzymes because they often exist as part of large
networks and are regulated by posttranslational events.
Metabolomic profiling of the substrates involved in these
reactions can help assign biochemical functions to these
enzymes providing access to “a portion of biomolecular
space that is inaccessible to genomics and proteomics”35

and have the potential to identify functionally relevant
biological targets.

The field of proteomics has developed almost in parallel
with metabolomics, although the terminology was
coined slightly earlier in 1994.36 Analogous to
metabolomics, some of the most commonly used
technologies for protein separation and identification
include liquid chromatography and mass
journal.publications.chestnet.org
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spectrometry.37 The proteome is also similarly dynamic
and sensitive to exogenous exposures and intracellular
stimuli.38 Together, these omes provide a downstream
read out of the genome and its direct interaction with
the environment.

As with metabolomics, proteomics studies remain
limited in respiratory medicine, specifically asthma.34

Studies are hindered by many of the same issues,
including sample size, lack of standards for sample
collection, handling and storage, multiple incompatible
profiling technologies, and underdeveloped analytical
methods.38 Similarly, quantification and identification of
proteins is challenging; as with the metabolome, the
entire proteome is yet to be characterized. Unidentified
proteins may account for up to 60% of the total
proteomic database and it is unclear exactly how large it
is.37,39 Mapping of the proteome is more advanced than
the metabolome, however, with drafts of the human and
lung proteomes available.34 Crucially, as with
metabolomics, the majority of reported proteomic
findings have yet to be validated.40

One notable difference between metabolomics and
proteomics is in the biospecimens used. EBC, which has
a low protein content, forms only a minority of the
literature, whereas sputum, lung epithelial lining, or BAL
fluid, which more directly reflect the lungs activity, are
much more commonly used.39 The abundance of
proteins in plasma and serum can be both an advantage
and a disadvantage, particularly for the measurement of
the less abundant, lower molecular weight proteins.41

The choice of biospecimen may therefore affect the
findings34 and is an important consideration for
integrated omics moving forward.

The proteomics asthma literature to date has been
summarized in several comprehensive reviews.38,40 In
plasma proteins involved in iron metabolism,
coagulation cascade, acute-phase response, responses to
stress and pathogens, and in complement cascades have
all been reported. Complement cascades were also
identified among the sputum and BAL fluid literature,
together with signaling; calcium-binding and lung
remodeling proteins; proteins involved in cellular
movement, immune cell trafficking, collagen
fibrillogenesis and chemotaxis; cytokines; chemokines;
matrix metalloproteinases; signaling; and, crucially for
integration, metabolic enzymes. Yet no proteomic
biomarkers with clinical applications in asthma have
emerged thus far.38 These findings broadly support
those of the existing metabolomics studies, which is, in
275
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particular, an important role for the immune system and
for identifying novel potentially important processes.
Going forward, however, it may be anticipated that the
exact points(s) of dysregulation, within a pathway, and
therefore more clinically relevant information, can be
identified by actually combining these two data sets.

Conclusion
Omics technologies remain in the early stages. Although
increasingly promising results are being reported,
metabolomics and proteomics in particular are limited
by a lack of standards in the field and uncertainty in the
optimal analytical methods. Additionally it is becoming
increasingly clear that integrated omic analyses are
necessary to maximally leverage these data. As more
large population-based studies begin to generate
multiomic data, it is likely to represent the newest
frontier in asthma research. However, clinical utility has
yet to be demonstrated, and whether the future of
asthma metabolomics and integrative omics lie in the
development of biomarkers, or whether it is better suited
to increasing the understanding of its underlying biology
remains to be determined.
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